14 Appendix: Frequent sequence
mining

We want to check, among our set of frequent items
extracted with sequential pattern mining, which of
them appear as one contiguous block and with what
support; so, we are doing what we're calling frequent
sequence mining starting from candidate sequences
which are the top patterns extracted with sequential
mining. These, the first 5 patterns that showed the
highest support in the pattern mining section, are:
1.19,9,9,9,9,9,9,9, 9, 9] occurs 406 times (as a
sequence),

2. [10, 9, 10, 10, 10, 9, 9, 9, 9, 9] occurs 125 times,
3.19,9,9,9,9,9, 10, 9, 10, 10] occurs 135 times,
4. 19, 10, 10, 10, 9, 9, 9, 9, 9, 9] occurs 108 times,
5.19,9,10,9,9,9,9,9,9, 9] occurs 341 times.

There are some interesting results: we can see that the
support obtained in the sequential pattern mining
(chap. 10, basically the same support for all 5
patterns) doesn’t necessarily follow the same
distribution of occurrence of that pattern in this
sequence mining (shown in the list just above, with
highly variable supports). The first sequence occurs
406 times in our set of time series and this represents
the 5% of the total number of time series. We can say
that this sequence of length 10 appears frequently.

In order to try and give some characterization to this
task we observed the track genre distributions for the
time series that contain one of the 5 sequences in our
list. In particular we noticed that there might be some
correlations between the 1th and 5th sequences. These
two sequences showed interesting features as they both
have a similar distribution of genres and similar
support. We plotted their genre distributions in the
following histograms:
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Figure 76: Genre distribution for Time Series that con-
tain 1th and 5th sequences

As specified in chapter 10 we couldn’t increase the
pattern length, so the fact that 1st and 5th show
similar distributions suggests to us that they could be
both characterizing a particular distribution and
therefore be part of the same, larger, pattern (longer
than 10, therefore not discovered with sequential
pattern mining).

We also noticed from the genre distribution that if the
symbol "10" appear in the sequence extracted, the
number of times series of genre Electronic decreases.
That’s shown in the following histograms of the 1th
and 2th sequences:
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Figure 77: Genre distribution for Time Series that con-
tain 1th and 2th sequences

This can be observed also from the previous
comparison. From these two observations it looks like
the frequency of genre electronic and the frequency of
symbol 10 are inversely proportional.
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